\qquad
Math 3113 Section 01
Practice Final Exam
November 19, 2019
Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work or answer, you will receive little or no credit!

1. Let A be an $n \times n$ matrix. Suppose that A has the following property: $A^{2}=A$. We call this property, idempotent. Show that A^{t} is idempotent. Is it true that if both A and B are idempotent, then so it $A+B$?
2. Let A be an $n \times n$ matrix. Suppose that A has the following property: $A^{k}=0$ for some $k \geq 1$. We call this property, nilpotent. Show that $I_{n}-A$ is an invertible matrix. (HINT: The inverse can be explicitly computed, think of factoring.)
3. Let

$$
S=\left\{-t^{2}+t+2,2 t^{2}+2 t+3,4 t^{2}-1\right\}
$$

Determine if S is a basis for P_{2}, the vector space of all polynomials of degree 2 or less.
4. Let

$$
S=\left\{t^{2}+1,3 t^{2}+2 t+1,6 t^{2}+6 t+3\right\}
$$

Determine if S is a basis for P_{2}, the vector space of all polynomials of degree 2 or less.
5. Let $T: P_{5} \rightarrow P_{5}$ be defined as

$$
T(p)=\frac{d p}{d t}
$$

Show that T is a linear transformation. Given the basis $B=\left\{1, t, t^{2}, t^{3}, t^{4}, t^{5}\right\}$, find a matrix A that represents T and compute the kernel of T.
6. Let $T: P_{3} \rightarrow P_{4}$ be defined as

$$
T(p)=\int_{0}^{t} p(\tau) d \tau
$$

Show that T is a linear transformation. Given the basis $B_{1}=\left\{1, t, t^{2}, t^{3}\right\}$ for P_{3} and basis $B_{2}=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ for P_{4}, find a matrix A that represents T and compute the kernel of T.
7. Compute the eigenvalues and eigenvectors of the following matrix:

$$
A=\left(\begin{array}{ccc}
0 & 0 & 3 \\
1 & 0 & -1 \\
0 & 1 & 3
\end{array}\right)
$$

8. Compute the eigenvalues and eigenvectors of the following matrix:

$$
A=\left(\begin{array}{ccc}
2 & 1 & 2 \\
2 & 2 & -2 \\
3 & 1 & 1
\end{array}\right)
$$

9. Use the Gram-Schmidt process to find an orthonormal basis for $S=\left\{1, t, t^{2}\right\}$ the standard basis for P_{2} with the following inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

10. Use the Gram-Schmidt process to find an orthonormal basis for $S=\{1, t\}$ the standard basis for P_{1} with the following inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

11. Find the $n t h$ order Fourier approximation to the function $f(t)=|t|$ on the interval $[-\pi, \pi]$. Use this result to deduce the famous identity:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

12. Find the $n t h$ order Fourier approximation to the function $f(t)=t^{2}$ on the interval $[0,2 \pi]$.
13. Let A be an $n \times n$ matrix who has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ that are all nonnegative. Show

$$
\sqrt[n]{\operatorname{det}(A)} \leq \frac{1}{n} \operatorname{tr}(A)
$$

(HINT: You will need to use the Cauchy-Schwarz inequality to deduce another helper inequality)

